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ABSTRACT
This paper addresses the design of user interfaces for aging
adults. Older people differ vastly in how aging affects their
perceptual, motor, and cognitive abilities. When it comes to
interface design for aging users, the ”one design for all” ap-
proach fails. We present first results from attempts to extend
ability-based design to the aging population. We describe a
novel approach using age-related differences as the princi-
ple of optimizing interactive tasks. We argue that, to be suc-
cessful, predictive models must take into account how users
adapt their behavioral strategies as a function of their abili-
ties. When combined with design optimization, such models
allow us to investigate optimal designs more broadly, examin-
ing trade-offs among several design factors. We present first
results on optimizing text entry methods for user groups with
different age-related declines.
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INTRODUCTION
By the year 2050, aging populations are expected to cover
27% and 15% of developed and developing nations, respec-
tively [9, 11]. This paper is motivated by the need to design
user interfaces (UIs) that better take into account age-related
changes in physiological (e.g., sensation, tremor), perceptual
(e.g., visual acuity, oculomotor performance), and cognitive
abilities (e.g., task-switching). We address the fact that con-
sequences of aging can be very diverse. Every user is dif-
ferent. As people grow older, the ability to regulate finger
posture decreases [34], as does visual acuity [20]. Cognitive
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abilities as learning, memory retrieval, and attention are im-
pacted negatively [6, 21]. Importantly, while age is clearly as-
sociated with decreases in abilities, a person’s nominal age is
not the determining factor. Some individuals are completely
healthy at age 90, and others frail at 60 [5]. There is plenty
of between-individual variance in sensorimotor and cognitive
capabilities even within persons of the same age.

Individual differences are important to address in the design
of more efficient and enjoyable technology for aging adults,
just as they are for the mass market. Current smartphone
interfaces tend to follow a ”one design for all” approach.
For example, the DOROTM smartphone (Figure 1), targeted
specifically for older adults, offers the regular Android vir-
tual keyboard for text entry. However, aging users have issues
with smaller target and finding keys. In other parts of the UI,
like the menu, elements are made overly large and colorful.
Is this the best UI for somebody with, say, issues with tremor
but with perfect vision?

The main goal of this work is to better address individual dif-
ferences brought about by aging. To this end, we build on
Wobbrock et al.’s [37] ability-based design, which has pre-
viously targeted users with disabilities. Our goal is to formu-

Figure 1. User interfaces for older adults often trivialize their cababili-
ties, either dropping functionalities or making elements overly large and
salient, stigmatizing the user. This paper presents results from a compu-
tational approach to customizing UI designs better to individual capa-
bilities (here: DOROTM Liberto 820).



late individual differences parametrically in a model that can
produce realistic task performance with a given UI, and use
this model to drive design optimization. We argue that pre-
dictive models must take into account not only differences in
abilities but how users adapt their behavioral strategies as a
function of their abilities. When combined with design opti-
mization, such models allow us to investigate optimal designs
more broadly, examining trade-offs among several design fac-
tors. We present first results from model-based exploration of
the design of text entry methods for user groups with differ-
ent effects of aging. We show our keyboard layouts covering
different cognitive, perceptual and motor effects namely, es-
sential hand tremor or Parkinson’s, less visual search ability
and disability in reading.

RELATED WORK
Our work is positioned in the field of ability-based design,
but utilizing optimization methods to construct designs, and
targeting individual differences in capabilities due to aging.

Model-based UI optimization
Stuart Card and colleagues proposed the first full-fledged
simulation of a user, GOMS, for HCI, in 1983. Instead of
guesswork or expensive studies, a designer would evaluate
an interface by simulating how users perceive, think, and act
when completing tasks. Subsequent models (e.g., ACT-R)
predicted not only task completion time but errors and mem-
ory load. To aid practitioners, mathematical simplifications
(KLM and GLEAN) and interactive modeling environments
were developed (CogTool), yet these were not combined with
algorithms that could generate designs.

HCI research using combinatorial optimization methods—
such as simulated annealing—to generate design started in
early 2000 to explore the use of realistic human performance.
During the last 16 years, this work has been extended to
menus [3], layouts [35], and gestures [33] among others.
Model-based UI optimization uses combinatorial optimiza-
tion and predictive models of human behavior in objective
functions of these algorithms. Design problems are defined
as search for an optimal design in a set of candidate de-
signs. The main benefit of the approach over heuristic and
machine learning methods is that a design can be produced
for meaningful and well-defined objectives, such as usabil-
ity or learning. These methods do not stop at searching for a
single ”best” design; they explore the space for surprising al-
ternatives too. Critically, design follows from first principles,
and those principles are scrutinizable and can be questioned.
Model-based UI optimization might offer a flexible and pow-
erful toolbox for ability-based design. However, with the ex-
ception of SUPPLE (see below), model-based UI optimiza-
tion has not been targeting individual differences. Our work
looks at differences brought about by aging, in particular.

Ability-based design
Recent papers have explored methods for capturing, measur-
ing, and modeling the abilities of diverse users [8, 13, 14, 22,
23, 25, 27, 28]. Large variations in human abilities yields

hard challenges to sensing, inference, abstraction, and mea-
surement. However, according to Gajos et al. [14], ability-
based interfaces can be developed if this problem can be
solved.

Although ability-based design can be achieved without auto-
matic adaptation, recent advances in adaptive UIs are promis-
ing. Achievements in automatic personalized UI generation
[12], ephemeral adaptation [10], adaptation to user skills [22],
and adaptation to changing contexts [24] demonstrate that in-
teractive technologies can detect and adapt to a users abilities,
and therefore support an ability-based design approach.

Prior works in ability-based design has been mainly focused
on designing specialized hardware which can help the dis-
abled to access the non-adapted software [37]. These ap-
proaches may improve the cost-efficiency, simplicity, as well
as lower configuration and maintenance costs, as well as de-
crease the abandonment rate of such specialized systems [4,
17, 26]. Some older adults (mainly above 80 years of age)
have problems to use touchscreen devices, at times due to be-
ing unaware of the interaction style.

Gajos et al. [12] introduced SUPPLE framework which is
similar to the one presented here. However, it uses decision-
theoretic optimization to automatically generate UIs adapted
to a person’s abilities, taking also into account devices, pref-
erences, and tasks. However, some of these are implemented
heuristically, making it hard to resolve conflicts due to con-
tradictory objectives (e.g., make buttons bigger at the same
time as making use more efficient overall). Our goal is to se-
lect a design through parametric optimization technique that
models each user’s individual abilities and predicts how they
contribute to their overall task performance. This allows for
optimizing for a single objective (e.g., task completion time)
without heuristics. We also contribute by addressing a do-
main (text entry on touchscreens) not addressed before.

Individual differences and aging
The most striking factor about age-related change is its vari-
ability. It is to be noted that the cognitive decline is not
inevitable. Some elderly maintain excellent cognitive func-
tion into their 70s and 80s and perform similar or better than
younger counterparts. Others show signs of decline by the
age of 60. In addition, it is observed that decline is not uni-
form across capabilities. As an example, some older adults
have excellent executive functions (cognitive control and su-
pervisory attentional system) but impaired episodic memory
function, and vice versa [16]. What accounts for this vari-
ability is of considerable interest to researchers and to the in-
creasing numbers of older people who want to ensure that
their cognitive functioning remains intact well into their later
years.

Inter-individual variability is an important aspect to be
considered while developing biological, psychological, and
health-related applications. Agarwal and Prasad [1] stated
individual differences as an important aspect to be consid-
ered toward developing information technology applications.
For example, recent functional neuroimaging studies have
observed different patterns of brain activation in older and



Figure 2. Overview of parametric optimization of user interfaces in ability-based design. User groups are described as sets of model parameters (θ).
The parametrized model M(θ) is used in an optimizer to search for customized designs. The model used in the case presented here assumes that users
adapt optimally to a design after experience (rational analysis).

younger adults while performing identical memory or work-
ing memory tasks [18, 29]. Such brain activation changes re-
late to declining sensory and perceptual abilities [31], which
older people compensate for in a variety of different ways.

Age-related changes in cognition are not uniform across all
cognitive domains nor across the aging populations. Atten-
tion and memory are the two basic cognitive functions most
affected by age [32, 11]. Evidence suggest that some aspects
of attention and memory hold up well with age while others
show significant decline. Age also affects higher-level cogni-
tive functions such as language processing and decision mak-
ing [15]. Moreover, a set of executive functions manage and
control various component of the complex cognitive tasks.
Many studies observed that the impairment of such executive
functions becomes a key factor for age-related declines.

Researchers have recently started to build models with pa-
rameters predicting age-related changes. Trewin et al. [36]
showed that whereas a pointing performance model for
younger adults fits with real data well, it fails to predict in-
dividual differences in pointing performance. Therefore, it
becomes a challenge to select parameters for building models
supporting older adult performance, by considering individ-
ual variations.

Summary
Although ability-based design has been found effective for
disabled users and has potential to extend toward address-
ing problems of older adults, it faces problems as the vari-
ation in older people’s abilities is very high. For example,
there exists large variability in visually search strategies in
the smartphones among young old, middle old and old old
persons. It is, therefore, easier to design effective interfaces
satisfying a specific ability, but very hard to come up with
an optimal design solution, supporting adaptability over all
variations in abilities. We propose ability-based optimization
approach, which computationally selects the optimal design

from large design space based on design and cognitive task
model parameters tuned for elderly users

APPROACH
This paper extends model-based UI optimization to ability-
based design. Figure 2 provides an overview of the approach.
A UI optimization task, in general, consists of a finite set
of candidate designs, an objective function, and constraints.
Hence, application to ability-based design critically rests on
formulation of objective functions in such a way that indi-
vidual differences can be expressed as part of the objective
function. We here explore the idea to express individual dif-
ferences as parameters (θ) of a predictive model. We call this
the parametric approach.

This work extends ability-based optimization from the con-
sideration of motor performance difference. As discussed
above, first implementations of this idea were shown by Gajos
and colleagues (e.g., [14]). However, they were limited to
models of motor performance combined with simple heuris-
tics to describe visual impairments. The problem with heuris-
tics (such as ”users with poor vision need a larger font”) is
that they are not able to resolve trade-offs in design. Lacking
a common unit of analysis, such as task completion time in
our case, it is not possible to say how much one design fac-
tor can be changed without overly compromising another. If
a single task-level model can handle all such factors, we can
collapse the optimization task to a single objective.

Another advance examined here is the use of rational analy-
sis to predict how a user with given characteristic might start
using a UI. We assume that interaction with a UI is associated
with a space of possible strategies. One well-known strategy
is speed–accuracy trade off in pointing: a person’s decision
to be faster at the expense of accuracy, or vice versa, be more
accurate but at the expense of speed. The identification of
relevant strategy spaces is outside this paper.



Procedurally, parametric model-based UI optimization has
the following steps:

1. Task definition: Defining design space D and objective
function

2. Model construction: Constructing a parametrizable predic-
tive model M of user behavior, including strategy adapta-
tion

3. Parameter acquisition: Acquiring parameters θ to describe
abilities of a user group

4. Optimization: Constructing an efficient combinatorial ap-
proach to solve the task

5. Assessment: Testing the robustness of the design to differ-
ing assumptions (e.g., change in parameters or task)

In the following, we describe out attempts to address these
issues. We have worked on the problem of typing on smart-
phone devices, and the individualization of designs with re-
gard to personal abilities that change due to aging. We de-
velop a multi-parameter model of typing and explore the con-
sequences various assumptions on what would be the most
suitable design groups with differing abilities.

CASE: TEXT ENTRY ON TOUCHSCREEN DEVICES
Our goal is to improve the text entry methods on smartphone
devices for aging users. Figure 3 depicts the predominant text
entry UI. The figure also shows four design factors which we
consider here, namely 1) number of rows in the word pre-
diction list (WPL), 2) row height, 3) number of words to be
provided in each row of the list, and 4) number of rows in text
display area.

Figure 3. We explore the optimization of smartphone UIs to user groups
with different characteristics. In this case, we optimize four design fac-
tors in touchscreen-based text entry.

We selected this case for its potential gains for older users.
For example, for older users with tremor problems (e.g., es-
sential tremor or Parkinson’s), it would be better to make the
key size bigger. However, this can only be done by group-
ing more than one letter onto a single key. While grouping
may sound like a promising solution, it makes entry ambigu-
ous, requiring an algorithm to disambiguate intended words.
One could also increase the number of choices offered in the
word prediction list (WPL). However, this introduces addi-
tional search time, which may be a problem in particular for
users with poor visual acuity. Considerations like these show
that the ”one design fits all” is ineffective for older adults.

Design Space
We describe the design parameters with their value ranges:

1. Number of rows in the prediction list: Usually, all the an-
droid and iOS keyboards have single row for the prediction
list. We accommodate a range of 1–5 rows for the predic-
tion list.

2. Elements in each row of the prediction list: Most of the
Android and iOS keyboards contain 3 words in a row, but
some still adjust based on the length of the predicted words
(in that case, maximum 5 words). In the following analy-
ses, we have fixed this number as 3.

3. Row height: The usual row height of the existing popular
Android and iOS layouts is the same as the character key
height. In the following, we vary the height in the range of
0.03%–0.07% of the height of the screen.

4. Number of rows in text display area: Almost all Android
and iOS keyboard designs reserve most of the screen area
for text display. We vary the number of rows between 2
and 7, whereas each row height is of the same as the key
height.

In this work, apart from the baseline QWERTY layout (Fig-
ure 3), we consider grouped layout as another alternative in-
put for the model and the optimizer. It minimizes the errors
caused due to ‘fat finger’ problem as well as ensures fewer
error in tapping for users having finger tremor or Parkinson’s.
We select three types of group: 3 × 3, 5 × 2 and 10 × 1.
We design these baseline and grouped keyboard layouts for
the design space in both English and Finnish languages. Two
Finnish group keyboard layouts are shown as Figure 4a and
4b.

TOUCH-WLM
Touch-WLM is a predictive model for individual differences
in text entry with smartphone devices using touchscreens.
Touch-WLM is a word-level model (WLM) of text entry.
While at the lowest level, it consists of deterministically ex-
ecuted (”keystroke-level”) sensorimotor actions, it also in-
cludes strategic decisions taken place at a higher level of con-
trol occurring at word-level. An overview of the model is
given in Figure 5. It is used in the subsequent optimizations as
the objective function. Importantly, it can be parametrized to
describe the characteristics of a particular user group. More-
over, it includes a mechanism to find optimal strategy in small
strategy spaces (rational analysis).



Figure 5. Overview of Touch-WLM. The model is parametrizable to present individual differences. The model has a decision loop that controls
keystroke-level and word-level responses. If the user makes a mistake, speed–accuracy tradeoff (SAT) is changed to lower error rate. If the user has
typed l letters, eyes will be shifted to the word prediction list to check if the typed word is there. Also, text display is checked and compared against the
reference word.

Figure 4. Example of some keyboard layouts belonging to the design
space: (a) keyboard with 3× 3 grid and (b) layout with 5× 2 grid

Touch-WLM builds on two modeling approaches: first, the
tradition of keystroke-level models (KLMs) [7] and, second,
rational analysis [2]. By combining the two, we produce a
model of how a user with different abilities might adapt to
the task of text entry. For example, a person with impaired
eye movements may want to look at the text display to ensure
if the text is correct.

In keystroke-level models, task performance is modeled as
deterministic sequences of mental actions and responses. Fur-
ther, KLM assumes one way of executing a task. This task
is broken down according to three categories of operations:

physical, mental, and system. Physical operations include
pointing, keystroking, homing, and drawing. Mental oper-
ations refer to events like recalling a command name or ver-
ifying that an answer is correct. System operation is system
response time, the time spent waiting. These operations are
counted and the times spent in each are estimated using guide-
lines and look-up tables. Task completion time is then their
linear sum.

To overcome the issue of rigid task execution, KLM builds on
work on rational analysis. Rational analysis refers to model-
ing human performance as optimal adaptation. It assumes
that there are multiple degrees of freedom in action, and that
after repetitive exposure users performance becomes closer
and closer to optimal behavior. More formally, we want to
pick strategy s ∈ S that maximizes user performance. In our
case, ”optimality” is defined in terms of words per minute
(WPM) achieved with some acceptable proportion of errors.
Using rational analysis, our model picks the best way to move
the fingers and the eyes. In particular, a user typing very fast
might have to spend relatively more time correcting errors
than a user typing slow, for example due to issues of visual
acuity. However, just how fast one should type depends on the
probability of errors and the cost of correcting them. Touch-
WLM tries to find the optimal speed–accuracy control point
for a user.

Another strategic issue Touch-WLM solves is when to look at
the text display. Given the fact that touchscreen keyboards
lack tactile feedback, tapping the keys requires visual gaze.
On the other hand, assuming that users do not always notice
when they make an error, they must look at the text display
once in a while to ensure there are no errors. They may also



not know when to look at the word prediction list (WPL).
How often should one look at the text display depends on in-
dividual abilities as well as the statistical distribution of am-
biguity in the language corpus.

Overview of task model
Touch-WLM calculates how long it will take for a given indi-
vidual (M(θ)) to type a given word with a given design (D).
It captures individual differences in typing speed by utiliz-
ing a model the human visual system, and a model for finger
speed–accuracy tradeoff, as well as two variables describing
behavioral strategies. A task model is followed:

1. Type l letters by

(a) attending and encoding target key with eyes

(b) moving finger to the key position and touching the key

2. If there was a typing error after typing l letters,

(a) move finger to backspace button and touch it, calculat-
ing movement time with WHo model with maximised
accuracy;

(b) repeat backspace press as many times as necessary;

(c) repeat step 1, i.e., type the letters again

3. If the correct word appeared in the word prediction list after
l letters,

(a) attend words in the prediction list one at a time

(b) if the target is there, select it

(c) if not, continue typing and finish the word

Eye movements
The model for attention shifts, encoding, and eye movements,
follows the EMMA integrated model of eye movements and
visual encoding [30]. The time it takes to encode a key is

Te = EK · [−log(f)] · eek·ε, (1)

where EK and ek are constants, f is the frequency of the
object (e.g., monogram frequency), and ε is the eccentricity,
measured as the distance of the target from current eye fixa-
tion (in degrees). Because encoding time increases exponen-
tially as the function of eccentricity, the visual system may
initiate a saccade to get closer to the target:

Ts = tprep + texec + d · tsacc, (2)

where tprep, texec, and tsacc are constants related to the hu-
man visual system, and d is the distance to be covered by the
saccade in degrees. If the encoding time calculated in (x) is
less than tprep, then the target is encoded without the eyes
moving from the previous targets. If not, then the remaining
encoding is conducted after the saccade.

Pointing
After the model has encoded the target key, it moves a fin-
ger from the key on which it was previously. The finger
movement time (x) and accuracy (y) calculations use WHo
model [19]. The important feature of the WHo model is that
it presents the speed–accuracy tradeoff (SAT) of pointing as
a strategic curve:

(y − y0)1−mα(x− x0)mα = mk, (3)

where mα and mk are individual parameters to be assessed.
The shape of the curve depends on individual ability, but the
choice of being accurate with the cost of speed, of being fast
with the cost of accuracy is done by the individual. While the
WHo curve is asymptotic with global (not individual) limits,
everybody has their own individual limits on how fast their
finger can get (WHomax), or how accurate they can maxi-
mally be (WHomin). These parameters are evaluated individ-
ually.

Strategy
In addition to visual search and finger movement, individ-
ual ability in typing is affected by cognitive aspects, such as
knowledge of the keyboard layout, speed of proofreading the
typed text, and the ability to do multitasking between finger
and eye movements. However, as will be shown below, the in-
clusion of such cognitive aspects into a model of touchscreen
typing is difficult and requires further research into these top-
ics.

However, we identify here two cognitive processes, called
confirmation time tconfirm and visual key search time skey ,
which are currently left as individually fixed parameters.

The two free parameters of the model, l (how many letters are
typed before checking it for errors and optionally looking for
the word in the word prediction list) and finger accuracy ma,
are assigned based on the language corpus. The model simu-
lates typing the words in the corpus with different parameter
values, iterating through values 1-5, and accuracy values as
given by the individually assigned WHomin and WHomax.
The best combination of l and ma are used as the best in-
dividually achievable typing performance. Because this last
step of finding the best typing strategy, we name the model
Touch-WLM.

Table 1 provides an inventory of all parameters that are used
to describe differences among individuals and tasks in Touch-
WLM. Informed by present knowledge of effects of aging, we
can now explore the consequences of changing these param-
eters.

OPTIMIZATION
The possibilities of the ability-based optimization approach
can be explored by investigated how changing the model pa-
rameters changes the optimal layout, given a parameter space.
In this work, we discretized each design variable to obtain
a search space that can be exhaustively covered. Here, we
present comparison results for text entry rates of designs built
for better finger speed, visual search time and proofreading



Table 1. Individual abilities modeled by Touch-WLM

Variable Explanation Domain

Eye movements
eK Encoding time Foveal encoding
ek Eccentricity factor Parafoveal encoding
tprep Saccade preparation Oculomotor command
texec Saccade execution Oculomotor command
tsacc Saccade velocity Oculomotor performance

Motor performance
mk Total resource Motor performance
mα Speed–accuracy bias Motor performance

Strategy
ma Finger accuracy Motor strategy
l Letters before proofing Cognitive strategy

Constants
skey Search time for key Visual search
tconfirm Backspace confirmation Thinking

time and the baseline (QWERTY layout). The design param-
eter space is described in Table 2 below.

Mean parameter values for the young and the old adults group
(YA and OA) with the layout and baseline are displayed in
Table 3. These parameters were obtained empirically WHo-
min and -max are multiplied by 1000 to obtain the parameters
for the model (easier to handle integers). Also, in the model,
WPL reading and proofreading are both done at lth letter.

Optimization was carried out using exhaustive search.

RESULTS
This section reports our first results. We emulated multiple
user groups and present here four of them (Figure 6) with
their final designs.

Effects of decreasing finger speed
Our first exercise emulated a user with decreasing finger
speed. This corresponds to the persons having tremor and
perkinson’s. We found that decreasing finger accuracy (ma)
negatively affects baseline. Larger keys are better in this case.
Setting mk to a large value (1.0) (low finger SAT resources),
the layout displayed (Figure 6(a)) improves the WPM over
baseline by 13.83% to 2.21. In addition, adjusting the mα,

Table 2. Design factor value ranges in design optimization

Parameter Range

Number of rows in the prediction list 1–5
Elements in each row of the prediction list 3
Row height 0.03%–0.07%*
Number of rows in text display area 2–7

* = represented as percentage of the display height (in pixel)

Table 3. Model parameter values

Parameter YA mean OA mean Baseline Variable

EMMA(s) 0.0134 0.0135 0.007 tsacc
EMMA(p) 0.292 0.326 0.333 tprep
WHo-k 0.116 0.138 0.126 mk

WHo-a 0.616 0.681 0.577 ma

WHo-min 0.00613 0.00714 7*
WHo-max 0.0753 0.0538 150*
Proofing 2.71 2.87 l
Bspace decide 0.781 1.43 1 tconfirm
Vis search (ms) 1066 1401 skey

* = spread

Figure 6. We design four keyboard layouts supporting several abilities:
(a) this layout is designed for people who has essential tremor or parkin-
son’s, (b) this layout is suitable for incurring lesser visual search time
to the people who have prior knowledge about the layout, (c) and (d)
these layouts support in achieving less proofreading time while typing,
specially for users having reading disabilities, i.e. dyslexia.



i.e., the finger strategy weight parameter, between the ex-
tremes [0.1, 0.9] does not change the overall result.

Effects of decreasing visual search ability
Our second exercise emulated a user with decreasing visual
search ability. This corresponds to the people who have prior
knowledge of the layout. Increasing the time it takes for the
individual to locate a given key changes the optimal layout: if
it takes a long time to search for a key, a keyboard with a large
word prediction list is preferable. Increasing visual search
time from 0.0s to 1.0s decreases the predicted WPM of the
baseline layout from 15.7 to 7.5. Using the layout displayed
in Figure 6(b) improves the WPM by 7.5% to 8.1.

Effects of slower proofreading time
Our third exercise emulated a user with decreasing proofread-
ing time. This corresponds to the older people suffering with
declining of cognitive processes during reading. Increasing
proofreading time (initially setting as 2.6s) seems to benefit
the grouped layout. However, if the proofing threshold l is
raised, then the model chooses accurate SAT and proofreads
rarely (because there are rarely errors with accurate SAT).
This causes the baseline to be better again. Two layouts are
designed (Figure 6(c) and 6(d)) which have improved WPM
by 2.64% and 8.43% to 10.73 and 10.82, respectively, from
the baseline layout.

DISCUSSION
This paper has presented first results towards extending
ability-based optimization to account for age-related differ-
ences in computer use. Our long-term goal is a computational
method to drive the differentiation of user interfaces based on
individual abilities. In the future, those abilities could be ei-
ther explicitly stated by the user (customization) or inferred
from log data (adaptation).

As ability-based optimized keyboard layouts are designed
considering specific abilities, the experiment with a keyboard
requires recruitment of participants having deficiency in cor-
responding specific ability. Moreover, a prior study would be
conducted to ensure the deficiency. For example, before the
experiment with people having essential tremor, it is required
to run the prior test to identify the tremor range of the partic-
ipants. If the test reveals that participants, in spite of old, do
not posses any tremor, then they are not allowed in the main
experiment. The aim of the user study is to compare the user
performance (mainly though text entry rate as WPM or CPS)
of the design layouts with the baseline, which is QWERTY
layout.

The present paper has contributed toward solving two emerg-
ing problems in this space: First, we need to describe indi-
vidual differences in predictive models. Previous work on
ability-based optimization has been limited to motor perfor-
mance and addressed other abilities via heuristics, if at all.
There has been no systematic methodology to express indi-
vidual differences in a psychologically plausible way. There-
fore, to extend this approach beyond simple pointing tasks
driven by Fitts’ law, it is necessary to build models that di-
rectly incorporate factors that predict differences among user

groups. Second, models need an account of how an individual
with particular capabilities will interact. To this end, we have
started to explore applications of computational rationality in
this space. The results we presented here show that the idea
of comparing parametric modeling with computational ratio-
nality can produce results that differentiate designs for user
groups with different effects of aging.

We note two disadvantages to the parametric approach as
challenges for future work. First, we presently lack opera-
tional definitions of design problems that match with avail-
able predictive models. Beyond this and the previous studies,
existing models have not been expressed in such a way that
individual differences can be parametrically expressed. Sec-
ond, we lack predictive models that cover essential aspects of
the large diversity of effects that impairments, aging, and in-
dividual differences can have. In the absence of such models,
one may have to resort to heuristic approaches or drop some
important design considerations entirely.

As a final note, we find it tremendeously important to
investigate methodology that allows designers to go be-
yond the failed ”one design fits all” approach. The non-
individualization and mis-individualization of UIs is a major
issue. Without UI designs that better support individual ways
of using smartphones, the aging population will be hampered
in their ability to participate in the society.
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