
IEEE Proceedings of 4th International Conference on Intelligent Human Computer Interaction, Kharagpur, India, December 27-29, 2012

Visual Clue: An Approach to Predict and Highlight
Next Character

Manoj Kumar Sharma1, Sayan Sarcar2, Pradipta Kumar Saha3 and Debasis Samanta4

IIT Kharagpur, Kharagpur, West Bengal, India - 721302
Email: 1manojsharma.net@gmail.com, mailtosayan@gmail.com2, 3itsmepradipta@gmail.com, 4debasis.samanta.iitkgp@gmail.com

Abstract—The motivation of this research is to develop a
user friendly word prediction system augmented with virtual
keyboard in the context of Indian languages. The objective would
be not only to save keystrokes but also to reduce the cognitive load
to compose the text accurately. In the context of Indian language,
in addition to large alphabets sizes there are a lot of phonetically
or graphically similar characters which needs more time to search
the desired characters and occasionally leads to taping wrong
characters. This issue can be addressed by highlighting the next
probable characters and thus offering visual clue and mitigating
errors. The proposed approach not only help in avoiding the
error, it also highlight the required character when user have
misspelled part of word while composing text.

Index Terms—Human computer interaction, Visual clue, Pre-
dictive virtual keyboard

I. INTRODUCTION

The composition of text in Indian languages has several

issues. It contains a large number of alphabets, matra, halant

and complex characters (yuktakshar) etc. [[1], [2]]. So, typing

in an Indian language with conventional Qwerty keyboard

is not an easy task as significant training is required to

compose the text [[3]]. As an alternative to hardware Qwerty

keyboard, researchers introduce virtual keyboard. A virtual

keyboard is an on screen graphical display where keys are

spatially arranged and can be tapped with finger tip or mouse

pointer. Further, text entry rate with virtual keyboard is less

compared with hardware keyboard. In addition, it becomes

a major issue in the context of Indian languages where text

entry rate through virtual keyboard is typically 3 - 5 wpm [[4]]
compared to 10 - 15 wpm in English [[5], [6]]. Further, the

performance of virtual keyboard can be improved with a text

entry rate enhancement strategy such as word prediction [[6],

[7]]. However, performance of predictive keyboard (i.e virtual

keyboard with prediction) depends on many factors such

as dictionary size, language characteristic, size and position

of prediction window, block of text to be predicted, search

strategy, prediction method etc. [[8]–[10]].
In context of Hindi, national language of India, follows

Devanagari script1. It contains a large set of characters (13

vowels, 33 consonants, 12 matras and special symbols like

anusvara, visarga, chandra bindu and nukta etc.) [[11], [12]]
along with complex characters called “conjuncts” (character

composed with two or more characters and “halant”) [[13]].

1Devanagari script, http://en.wikipedia.org/wiki/Devanagari

Further, there are some graphically and phonetically similar

characters [[14]] which increase the finite chance of confusion

to select the proper character and occasionally lead toward

tapping wrong characters. The above mentioned complexities

make text composition task erroneous and time consuming, as

a consequence yield poor text entry rate.

Finding a target character in predictive keyboard containing

large character set demands a high reaction time. According

to the Hick-Hyman law [[15], [16]], the reaction time is directly

proportional to the number of objects in the interface. In other

words, if the number of keys is large, then reaction time of

visually searching a character increases moderately. To reduce

the reaction time, one of the possible solutions is to contain

a minimum number of keys. However, designers advocate to

contain all keys necessary to compose text within a single

layout. It is therefore a challenging task to meet both the

requirements.

In recent literature, Joshi et al. [[3]] uses the color code to

differentiate the consonant and vowel blocks in hardware key-

board like Keylekh2 and Keylekh3. Whereas, another system

Guruji2 uses the color code to distinguish between consonants,

vowels and numeric keys to provide a visual assistance in

virtual keyboard. Some system [[17], [18]] highlight the next

character in virtual keyboard at runtime. System developed by

Laurent Magnien et. al. [[18]] highlight the next probable keys in

bold after each keystroke at the time of typing. The prediction

of character is based on a French dictionary of 1462 words

using lexical tree. They concludes that visual clues improve the

text-entry rate. However, the improvement tends to decrease

when previously entered text is error-prone.

To address the above problem, we propose a method called

predicting next character highlighter (PNCH) which provides

visual clue by highlighting next probable character(s) in the

predictive keyboard interface. Following are the objectives

behind the development of PNCH.

• To provide visual assistance in composing texts and

improve text entry rate.

• To reduce the search space by predicting next probable

characters which may require for composing a word.

• To highlight the best suitable characters even in presence

of some typographical error in the initial entry of a word.

2http://www.guruji.com/hi/index.html

978-1-4673-4369-5/12/$31.00 c©2012 IEEE

• To develop a framework which can be easily plugged to

any predictive virtual keyboard in Indian languages.

• To develop a mechanism which will help used to learn a

new keyboard layout.

II. PROPOSED METHODOLOGY

Development of PNCH is described in this section. We start

our discussion with basic framework of PNCH followed by

highlighting issues in candidate character computation. Next

we present few terminology involved in our work. Then we

discussed the steps involved in candidate character compu-

tation and its filtration in Algorithm walkthrough. Section 3

present the experimental result. Finally Section 4 concludes

the paper.

A. Basic framework of the PNCH

The basic idea behind the PNCH is as follows. Let SetA
consist of N0 number of characters (the keys) present in

a predictive virtual keyboard. We partitioned the SetA into

two different set namely SetB and SetC. SetB consists of N1

number of characters and represents the number of possible

characters we may be interested to type next. Whereas, SetC
contains the remaining characters (N2 = N0 − N1) in the

predictive virtual keyboard. As the number of next probable

characters in a given context is less than the total keys present

in the predictive virtual keyboard, so we can assume that

N1 < N2. When a user needs to select a character from

the predictive virtual keyboard, he first looks into SetB, if

the target character is not found in this set then the user

searches desired character in SetC. If the user finds the

required character most of time in SetB, then the reaction time

will be reduced, as this reduces the search space from N0 to

N1.

The framework of augmenting visual clue with the word

prediction system is shown in Fig. 1. This have two major

module namely: prediction module and PNCH module. Pre-

diction module are designed in such a way to handle to typing

error and suggest the suitable candidate list of word. Whereas,

PNCH takes input from this word prediction module and

perform some addition processing to identify the possible set

of next character need to be typed while composing the text.

When a user enters a character through the predictive virtual

keyboard, various scores are calculated based on phonetic or

graphical similarity, spelling error and ngram probability [[19]].
These scores are then accumulated and sent for ranking the

final list of the candidate words. After ranking is performed,

we extract top seven words and display them in the prediction

window. The generated list (say CL) acts as an input to the

PNCH module. For each word in CL, let it be denoted as α, we

need to identify the characters to be highlighted (see Fig. 2(a)).

The PNCH module generates the list of the best candidates to

be highlighted in the predictive virtual keyboard.

The development of PNCH consist of two modules: a) iden-

tification of candidate characters and b) filtration of candidate

characters. We start our discussion with issues in candidate

character identification.

Fig. 1: Augmentation of PNCH with the proposed word

prediction system

B. Issues in identification of candidate characters

The generated candidate list according to the word pre-

diction method and character sequence entered by a user at

any instance (say β) are taken as input to this task. Here,

word prediction module suggests word based on word level

trigram, phonetic or graphical similarity between typed and

desired word, and typographical error. Suppose after entering

β the desired word is not coming in prediction window, so next

character is needed to be typed. We take each candidate word

from this list and given β, to identify the candidate characters

for highlighting (see Fig. 2(a)). As there exist two different

situations while composing a text:

• User has typed the character sequence correctly.

• The typed sequence contains some typographical error.

This section illustrates the issues in identifying the candidate

character to be highlighted. Suppose, typed sequence and

candidate words are represented as β and α, respectively. Let β
contains n number of characters. In the first case, the required

next character for highlighting can be obtained at (n + 1)th

position in α. Whereas, in the second case, identification of

next character to be highlighted become challenging due to the

presence of error. Note that a typographical error may occur

due to insertion, deletion and substitution of character(s). So,

the desire character is not always at the (n+ 1)th position.

For example, β is ��� and α is ���pr��	. Here, β consist

of three characters and α have 10 characters (see Fig. 2(b)).

Suppose, for instance, user has omitted the halant while

composing part of α as shown in β. When we look at 3 + 1,

that is, 4th character in α it is �, but this character is already

entered by the user in β and it should not be highlighted again.

As in this case, our best candidate is
 which is located at 5th

position instead of character � at 4th position.

In the following, we define few terminology followed by

our approach.

C. Some definitions

In this section, we briefly mention these terminologies.

CSID: Character set ID or CSID is unique ID for set

of phonetically or graphically equivalent character(s). For

example 	, � and � all are mapped to character 	 (see the

Table I). Hence the character set ID (or CSID) represents the

character which denotes this set here, CSID for � is 	.

TABLE I: Graphical or phonetic similar sets of characters in

Hindi

CSID Similarity set CSID Similarity set

a a a� � � � �
i i � � � � � 	
u u
 � � � �
� � � � � �
e e e� � � � � � �
a� a� a� � � � �
a� a� a� � �
� � ! !
" " # $ $
% % & ' ' ()
* * + , ,
- - .
/ / 0 1

Processed CSIDseq: It represent a sequence of CSID after

some processing. Computation of Processed CSIDseq is

described in Algorithm 1. Here, α represent the word whose

CSIDseq is required to be computed.

Algorithm 1 CSIDseq computation

Input: Words α
Output: Returns CSIDseq for α

1: γ ← Convert each entry in α into its respective CSID
2: CSIDseq ← Remove “halant” followed by deletion of consecutive duplicate

CSIDs in γ
3: Return CSIDseq

Let β, α, μ and ω be the sequence of typed characters,

candidate word, processed CSIDseq of β and α, respectively.

The symbols and there meaning are summarized in Table II.

Sliding Window: A Sliding Window provide a range to

cover (n − 1), n and (n + 1)th character in ω where n is

the number of characters in μ. Let C0 refers to some specific

(a) Identification of next character

(b) Pointing to correct character

Fig. 2: Next character identification

TABLE II: List of symbols used and there meaning

Terms Description

CSID Character set ID

α Candidate word

β Sequence of character typed towards composing word

β
′

Normalize value of β after removal of ZWJ and ZWNJ

C0 Some specific characters

CH Stores the value C0

μ Processed CSIDseq of β

ω Processed CSIDseq of α

n Number of characters

τ Candidate character

Pos Position of candidate character

CL Initial candidate list from prediction window

character which we are interested in. We need to search the

occurrence of C0 within this sliding window.

Fig. 3: Sliding Window

Window Shift counter (WindowShiftcounter): It repre-

sents the number of shifts the Sliding Window requires to find

a desired character (say C0) in ω.

Location counter (LocationCounter): It indicates the po-

sition of C0 in α, where C0 ∈ ω.

Halant counter (Halantcounter): It indicates the number

of halants in β after the last occurrence of C0 in β.

D. Algorithm walkthrough

Our procedure to compute candidate characters for high-

lighting is precisely stated in Algorithm 2. We take a list (i.e.

CL) from prediction module, the character sequence entered

by the user (denoted as β) and number of characters (N) to

be highlighted as input. The steps involved in computation of

candidate character is as follows:

We first normalize the β (unicode normalization3) and delete

all the occurrence of “ZWJ” (Zero width joiner4) and “ZWNJ”

(Zero width non joiner), if they are present, and store it into

β
′

(Step 1 in Algorithm 2). Next, we take the list of candidate

list (CL) from the prediction module and take out one word

at a time (see Fig. 2a). Let this word be denoted as α here, αi

indicate ith instance of the candidate words in the list CL. We

convert both β
′

and αi into its respective processed CSIDseq

and store in μ and ω, respectively (see Fig 4 and Steps 5 and 6

in Algorithm 2). Next, we compute the WindowShiftcounter
using Algorithm 3 and retrieve the value of C0. Once we

properly identify the value of WindowShiftcounter and C0,

3http://unicode.org/reports/tr15/
4http://unicode.org/review/pr-27.html

Algorithm 2 PNCH
Input: β, CL and N are typed sequence of characters, list of candidate words
from prediction module and number of characters to be highlighted in the keyboard,
respectively.
Output: Returns a set of candidate characters in Lfinal for highlighting.

1: β
′
= Normalize (β) /* Unicode normalization for β and removal of all the

occurrence of “ZWJ” and “ZWNJ” */
2: while (flag == true) do
3: for (i = 0; i ≤ Length(CL)− 1; i + +) do
4: αi = CL[i] /* Get candidate word from

list CL */
5: μ = Processed CSIDseq for β

′

6: ω = Processed CSIDseq for αi

7: Compute WindowShiftcounter and C0 for β
′

and αi

8: Compute Locationcounter

9: Compute Halantcounter

10: Pos = WindowShiftcounter + Locationcounter +
Halantcounter + 1

11: τi = αi[Pos] /* τi contains candidate character for αi word */
12: /* Filter the candidate character for highlighting */
13: if (Lfinal does not contain τi) then
14: Add τi into Lfinal

15: Count + +
16: /* Check the number of character to be highlighted */
17: if Count == N then
18: flag= false
19: /* Skip further computation if N number of character is identified */
20: Break
21: end if
22: end if
23: end for
24: end while
25: Return Lfinal

we use these data for computation of Locationcounter and

Halantcounter using Algorithm 4 and Algorithm 5. Next, we

compute the position of target characters using Pos (Step 10

in Algorithm 2) . Finally, characters can be obtained using

τi = αi[Pos].

Fig. 4: Steps involved in the computation of candidate char-

acter

We take a list Lfinal which is initially empty and append

this obtained character τi into Lfinal if this character is not

already present in the list. This will also maintain the order

given by the prediction module. We simultaneously check the

number of character present in Lfinal is less than the N
(Steps 13 to 22 in Algorithm 2). If a sufficient number of

characters are computed, then we stop processing. Further, we

highlight all characters present in Lfinal into the predictive

virtual keyboard in their respective order.

Algorithm 3 takes α, β
′
, μ and ω as candidate word, nor-

malized typed sequence of character and processed CSIDseq

for β
′

and α, respectively. Suppose, n number of characters

are present in μ, we store the last character in μ into C0

(Step 2 in Algorithm 3). Now, we need to initialize the size

of SlidingWindow. It starts from SlidingWindowstart and

stops at SlidingWindowstop. SlidingWindowstart will be

initialized to 0 when n is 1, otherwise, it will be set to

(n − 1) (Steps 3 to 7). Whereas, SlidingWindowstop is

calculated as (n+1). Now we match the content of C0 in this

SlidingWindow. When we do not find any match, we shift the

SlidingWindow by one towards left by decreasing the value of

n (Step 17) and increment the WindowShiftcounter. Each

time SlidingWindow is adjusted we update the value of C0

(Step 1 and 2 in Algorithm 3).

We use Algorithm 4 for the computation of

Locationcounter. It takes α, β
′
, C0 as candidate word,

normalized typed sequence of characters and specific

character set from WindowShiftcounter module (using

Algorithm 3), respectively. Each character present in β
′

is

first converted to its respective CSID and then matched with

C0. We record the number of matches into Occ. Next, we

convert each character of α into its respective CSID and

match with C0. We find the Occth occurrence of C0 into α
and stored into Locationcounter.

Algorithm 5 is used to compute the Halantcounter which

takes input β
′

and C0. We convert each character of β
′

into

its respective CSID. Next, we find the match of C0 into this

converted CSID from right-hand side. Once the position of

match is known, we extract the chunk of string from this data

Algorithm 3 Computation of WindowShiftcounter

Input: α, β
′
, μ and ω are candidate word, normalized typed sequence of characters

and processed CSIDseq for β
′

and α, respectively.
Output: Set value of C0 and returns WindowShiftcounter .

1: while (flag == false) do
2: C0 = μ[n] /* Update C0 from μ */
3: if (n ≤ 1) then /* Specifying the range for Sliding

Window */
4: SlidingWindowStart = 0
5: else
6: SlidingWindowStart = n− 1
7: end if
8: SlidingWindowStop = n + 1
9: /* Finding match between C0 and sequence of character in Sliding Window */

10: for (i = SlidingWindowStart; i ≤ SlidingWindowStop; i + +) do
11: if (C0 == ω[i]) then
12: flag=true
13: Break
14: end if
15: end for
16: if (flag == false) then
17: n = n− 1 /* Shift Sliding Window */
18: WindowShiftcounter + +
19: end if
20: end while
21: Return WindowShiftcounter

Algorithm 4 Computation of Locationcounter.

Input: α, β
′
, C0 are candidate word, normalized typed sequence of characters and

specific character from WindowShiftcounter module, respectively.
Output: Returns Locationcounter

1: for (j = 0; j ≤ length(β
′
)− 1; j + +) do

2: if (C0 == CSID(β
′
[j])) then

3: Occ + + /*Count the occurrence of C0 in converted CSID of β
′

*/
4: end if
5: end for
6: for (j = 0; j ≤ length(α)− 1; j + +) do
7: if (C0 == CSID(α[j])) then
8: count + +
9: /*Locate Occth occurrence of C0 in converted CSID of α */

10: if (count == Occ) then
11: Locationcounter = j
12: Break
13: end if
14: end if
15: end for
16: Return Locationcounter

Algorithm 5 Computation of Halantcounter

Input: β
′

and C0 are normalized typed sequence of characters and specific character
from WindowShiftcounter module, respectively.
Output: Returns a value for Halantcounter

1: Stop=length(β
′
)− 1 /* Get position of last character in β

′
*/

2: for (j =Stop; j ≥ 0; j −−) do /* Scan β
′

from right to left*/

3: if (C0 == CSID(β
′
[j])) then

4: Start=j /* Identify position of correct match of

C0 in β
′

*/
5: Break
6: end if
7: end for
8: Copy the part of β

′
from Start to Stop into Chunk

9: Count occurrence of halant in Chunk and store into Halantcounter

10: Return Halantcounter

Fig. 5: A snapshot of ∗hInidA augmented with PNCH

and count the occurrences of halant in it.

In our work, we have selected top seven characters to be

highlighted in the virtual keyboard (i.e N = 7). The seven

characters are highlighted into two different colors. The top

three most probable characters are marked in one color and

the rest four characters are marked in other color.

For example, suppose a user enters β as 	 (where his

target is to compose αi which is 	��. The next probable

character is predicted and highlighted as shown in Fig. 5. The

required character, which is (halant), is properly predicted,

as it is matra so it combines with last consonant and high-

lighted � while displaying in virtual keyboard.

Further, example for identification of candidate characters

in presence of typing errors are shown in Table III. Here, α
represents the target word and β is the typed sequence of

characters; ω and μ are processed CSIDseq for α and β.

TABLE III: Generating candidate character in various condi-

tions in PNCH

Sl. Description β μ α ω C0 τ

1 Error free �� �� ��� �! ��u�! � �
2 Deletion u�� u�� u2��� u��a� � �
3 Deletion �	� �	� �3�pr��' �	��!�e' � �
4 Substitution u�' u�) u2)�, u�'a,) �
5 Substitution u�� u�� u2)�, u�'a, � �
6 Insertion ,����� ,a�i� ,������ ,a�i�a� � �

Suppose, we consider a deletion error where α is u�
���
(consisting of seven characters) and β is u�
 (consisting of

three characters). Note that (halant) is missed in β for

composing α. The proposed PNCH module correctly identifies

the character � (represented as τ) in α at the fifth position.

Further, this table demonstrates identification of τ in error-free

condition as well as with deletion, substitution and insertion

error.

III. EXPERIMENT AND EXPERIMENTAL RESULTS

All experiments in this work have been carried out on

a Window 7 operating system, Intel Core 2 Duo processor

with 2 GB primary memory. The proposed algorithms and

Hindi predictive virtual keyboard have been developed using

C# 3.5 in the Visual Studio 2008 environment. A web

version of developed system is hosted at Human Computer

Interaction Lab, Indian Institute of Technology, Kharagpur,

India. It can be accessed at http://www.nid.iitkgp.ernet.in/

Manoj/WordPrediction/. We refer the developed word predic-

tion system as *hIndiA.

To evaluate the performance of PNCH, we use two systems

namely hIndiA and ∗hIndiA [[19]] and conduct test using

with and without PNCH. In hIndiA, use of word prediction is

disabled whereas the user can select a word from the prediction

window in case of ∗hIndiA. In Table V, say Case 1 indicates

text composition with hIndiA without PNCH, whereas Case
2 indicates the situation when PNCH was augmented with

hIndiA. Similarly, Case 3 and Case 4 represent the use of

word prediction without and with PNCH approach, respec-

tively.

TABLE V: PNCH on different conditions

System
PNCH

Without With
hInidA Case 1 Case 2
*hIndiA Case 3 Case 4

We use few metrics to measure the performance of proposed

PNCH method. These metric are described below.

A. Metrics for performance measure

The metrics used to evaluate PNCH are as follow.

Text entry rate: This metric represents the number of words

a user can enter in one minute and expressed in wpm.

TABLE IV: Summary of benchmark texts used in experiments

Domain Text ID Reference Text Domain of Text
Number of
Sentences

Number of
Words

Out-of-
domain

H1 Godan by Munsi Premchand Novel 14 204

H2 Dohri Zindagi by Vijaydan Detha Story book 13 191

H3 Patrakarita: ek parichay by Sandip Kumar Srivastava Journalism article 17 261

H4 Atmakatha by Rajendra Prasad Autobiography 15 223

In-domain H5 Wikipedia Miscellaneous 16 247

Pnchhit: It is referred to the percentage of times the next

character is correctly highlighted.

PKS: This metric represents the number of keystrokes

required by simulation program to compose a text.

The calculation of PKS also includes one additional

keystroke required to select a word from the prediction list

as in Wolf et. al. [[20]].

B. Performance evaluation

We have performed both empirical and simulated evaluation

for PNCH in different conditions, and they are described

below.

Empirical evaluation We have selected 14 users to evaluate

the performance of PNCH. The users are instructed to use

five benchmark texts shown in Table IV following the Read
and Type (RT) and Listen and Type (LT) method for text

composition. We have conducted the test on four different

conditions (see Table V). The text composition task is repeated

five times for each user.

We observe that augmentation of PNCH increases the text

entry rate of hIndiA to 26.64% (i.e. Case 2 over Case 1).

In Case 2, we also observe that, text entry rate of in-domain
text is higher compared to out-of-domain text (see Fig. 6(a)). In

case of ∗hIndiA, that is, text entry using word prediction with

and without PNCH, only 7.37% of improvement is observed

(see Fig. 6(b)).

Simulated evaluation: In this method, a simulation compo-

nent has been developed which reads words from the different

benchmark texts (see Table IV) and passes them character

by character to the word prediction system developed by

[[19]]. It processes and populates the word in the prediction

list. Whenever the prediction list contains the target word,

it accepts the word and processed the next word until the

text is complete. If the word is presented in the prediction

list and selected by the simulated component, it automatically

increments the hit count and appends space in the composed

text. We record PKS, KuP and HR into log file.

To understand the effect of Pnchhit and keystroke savings

(PKS) on different modes of simulation, we have conducted

the test on Mode 1 and Mode 2. In Mode 1, simulation program

reads a word from the benchmark texts and composes the text

without any error in it. In Mode 2, the simulation program also

takes the location number where an error can be incorporated

(let it be the ith position). The program reads the word from

the benchmark texts and randomly chooses a character and

(a) hIndiA with and without PNCH

(b) ∗hIndiA with and without PNCH

Fig. 6: Performance of the systems with and without PNCH

alter it with the character at ith position in the word. Here,

i > 1, that is, error can be at second position or onward.

We observed that in Case 1 and Mode 1 (i.e. using hIndiA
in error-free condition), the proposed system predicts the

character correctly 85.60% of times on five benchmark text

(i.e Pnchhit = 85.60%). Whereas, in Mode 2, that is, in E2,

E3, E4 and E5 condition, the Pnchhit are 78.59%, 82.81%,

84.86% and 85.53% (as shown in Fig. 7(a)), but there are no

keystroke savings.

The simulation study on Case 4, that is, ∗hIndiA with

PNCH, reveals that the Pnchhit is 66.20% on Mode 1, that

is, in error-free condition (see Fig. 7(a)). On the other hand,

it is about 64.9%, 65.80%, 65.89% and 65.93% in E2, E3,

E4 and E5 conditions. However, this Pnchhit comes with the

saving of keystroke required to compose the text. Finally, the

relation between Pnchhit and keystroke savings are shown in

Fig. 7(b). We can observe that 77.92% of character is correctly

predicted with keystroke savings of 68.11% in case of In-
domain text (i.e. in H5). However, in case of H1, we achieve

only 63.40% of Pnchhit and keystroke savings of 35.28%.

(a) Hit rate achieved between hIndiA and ∗hIndiA on
different modes of simulation

(b) Hit rate and PKS

Fig. 7: Hit rate and keystroke savings when word prediction

is used

IV. CONCLUSION

A new mechanism called PNCH has been proposed to

reduce visual search time and hence improve text entry

rate. While composing text, PNCH predicts the next possible

character set which may be required and highlight them into

virtual keyboard. Unlike the existing character highlighter,

which work on tree structure and fails when there is error in

initial entry of a word, the proposed PNCH augmented with

word prediction system predict the correct character even in

presence of error. It also guide the user to select the proper

character if the desired word is present in prediction list and

missed by user to select. The PNCH mechanism has two

parts, identifying the suitable character and filtering suitable

candidates. Special attention is needed while identifying the

candidate character as composed text may contains typing

error. We also observed the there is relation between pnchhit

and keystroke saving.

As observed from the experimental result, the augmentation

of PNCH increases the text entry rate of hIndiA upto 26.64%
over the interface not having PNCH facility. In case of

∗hIndiA, only 7.37% of text entry improvement is observed

using word prediction with and without PNCH. Accessing

hIndiA in error-free condition, the proposed system correctly

predicts the character for 85.60% times on five benchmark

text. On the other hand, the simulation study on ∗hIndiA
with PNCH signifies that the Pnchhit becomes 66.20% on

error-free condition. However, this Pnchhit comes with the

saving of keystroke required to compose the text.

We observe that PNCH module also helps user to enter

a character correctly, before he gets confused and causes an

error. So, with the help of the highlighter, it is being assured

that wrong text composition will be minimized. It is important

to note that the proposed visual clue works even in presence

of typing error. Most of the time user can get desired character

as highlighted. Hence, it can be selected more quickly and as

a result, text-entry rate increases.

REFERENCES

[[1]] O. N. Koul, Modern Hindi Grammar. Indian Institute of Language
Studies, 2008.

[[2]] T. Mohanan, Argument Structure in Hindi. CA, USA: Center for
the Study of Language and Information, Leland Stanford Junior
University, 1994.

[[3]] A. Joshi, A. Ganu, A. Chand, and V. P. G. Mathur, “Keylekh: a
Keyboard for Text Entry in Indic Scripts,” in Extended Abstracts on
Human factors in Computing Systems (CHI). New York, USA: ACM,
2004, pp. 928–942.

[[4]] S. Sarcar, S. Ghosh, P. K. Saha, and D. Samanta, “Virtual Keyboard
Design: State of the Arts and Research Issues,” in IEEE Students’
Technology Symposium. Kharagpur, India: IEEE, 2010, pp. 289–
299.

[[5]] I. S. MacKenzie, I. S. Shawn, X. Zhang, and R. W. Soukoreff, “Text
Entry Using Soft Keyboards,” Behaviour & Information Technology,
18(4), 235-244., 1999.

[[6]] K. Trnka, J. McCaw, D. Yarrington, K. F. McCoy, and C. Pennington,
“User Interaction with Word Prediction: The Effects of Prediction
Quality,” ACM Transaction on Accessible Computing, vol. 1, no. 3,
pp. 1–34, 2009.

[[7]] A. Fazly, “The Use of Syntax in Word Completion Utilities,” Master’s
thesis, Department of Computer Science, University of Toronto, 2002.

[[8]] N. Garay-Vitoria and J. Abascal, “Text Prediction Systems: a Survey,”
Universal Access in the Information Society, vol. 4, no. 3, pp. 188–
203, 2006.

[[9]] M. Herold, “The Use of Word Prediction as a Tool to Accelerate the
Typing Speed and Increase the Spelling Accuracy of Primary School
Children,” Ph.D. dissertation, University of Pretoria, 2004.

[[10]] M. K. Sharma, S. Dey, P. K. Saha, and D. Samanta, “Parameters
Effecting the Predictive Virtual Keyboard,” in IEEE Students’ Tech-
nology Symposium, April 2010, pp. 268–275.

[[11]] T. U. Consortium, “Unicode Detail,” 2009, available: http://www.
unicode.org, Accessed on June 2010.

[[12]] A. Gupta and G. Jamal, “An Analysis of Reading Errors of Dyslexic
Readers in Hindi and English,” Asia Pacific Disability Rehabilitation
Journal, vol. 17, no. 1, pp. 73–86, 2006.

[[13]] I. S. MacKenzie and K. Tanaka-Ishii, Text Entry Systems: Mobility,
Accessibility, Universality. Morgan Kaufmann, 2007.

[[14]] P. K. Ghosh and D. E. Knuth, “An Approach to Type Design and
Text Composition in Indian Scripts,” Ph.D. dissertation, Stanford
University, 1983.

[[15]] W. E. Hick, “On the Rate of Gain of Information,” The Quarterly
Journal of Experimental Psychology, vol. 4, no. 1, pp. 11–26, 1952.

[[16]] R. Hyman, “Stimulus Information as a Determinant of Reaction
Time,” Journal of Experimental Psychology, vol. 45, no. 3, pp. 188–
196, 1953.

[[17]] J. Gong, B. Haggerty, and P. Tarasewich, “An enhanced multitap
text entry method with predictive next-letter highlighting,” in CHI’05
extended abstracts on Human factors in computing systems. ACM,
2005, pp. 1399–1402.

[[18]] L. Magnien, J. Bouraoui, and N. Vigouroux, “Mobile Text Input with
Soft Keyboards: Optimization by Means of Visual Clues,” Mobile
Human-Computer Interaction–MobileHCI 2004, vol. 3160, pp. 197–
218, 2004.

[[19]] M. K. Sharma, “Word Prediction System with Virtual Keyboard for
Text Entry in Hindi,” Master’s thesis, Indian Institute of Technology
Kharagpur, India, 2012.

[[20]] E. Wolf, S. Vembu, and T. Miller, “On the Use of Topic Models for
Word Completion,” Advances in Natural Language Processing, vol.
4139, pp. 500–511, 2006.

