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ABSTRACT
Of late, many text entry systems in users’ languages with vari-
ous text entry rate enhancement strategies are being proposed.
To evaluate the effectiveness of such text entry systems, mea-
suring error correction efficiency in addition to text entry rate
have been advocated by researcher. Existing metrics for eval-
uating text entry errors are found inaccurate to evaluate text
entry systems augmented with word prediction. This work
attempts to bridge this gap. In this work, we redefine existing
error classes as well as error quantifying metrics. In addition
to this, we also introduce five different errors classes and six
new metrics relevant to text entry error evaluation in the con-
text of text entry systems augmented with word prediction.
We substantiate the validity of error classes and efficacy of
the metrics with a sufficient number of instances.

Author Keywords
Text entry error evaluation, word prediction, error
quantification metric, text entry systems

ACM Classification Keywords
H.5.2 User Interfaces: Evaluation/methodology, theory and
methods

General Terms
Human factors, measurement, performance

INTRODUCTION
The advent of new text entry mechanisms creates the neces-
sity to establish the strong foundation of rapid and accurate
text entry with digital devices. The performance of a text
entry task can be measured by maintaining a log file of user
activity, updated through background program. The log file is
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further analyzed to identify character level errors committed
by users. The analysis is quantified by some metrics which
work on a basic assumption that correction should be made
through backspace key in the keyboard, without using mouse
or other pointing devices.

Earlier, Soukreff and Mackenzie [9] propose a technique
based on the Levenshtein minimum string distance statistic
for measuring error rate. Their work defines two metrics
namely, Minimum String Distance (MSD) and Keystroke
per Character (KSPC). Mackenzie further discusses the cal-
culation of KSPC over a variety of text entry methods [5]
(where KSPC = or < or > 1). However, for word predic-
tion system, the calculated KSPC value is less than 1 whereas
for QWERTY and multi-tap keyboard, the values are equal to
and greater than 1, respectively. Furthermore, Soukreff and
Mackenzie, in 2002 [6], modify the Error Rate calculation
formula [9]. There, Per-character errors are categorized as
insertions, substitutions, or deletions, by analyzing the align-
ments and applying a weighting factor. Soukoroff et. al.
also identify the shortcomings of both MSD and KSPC met-
rics [10]. They propose a framework combining the analysis
of the presented text, input stream and transcribed text. Their
paper describes a unified total error rate by combining two
constituents, the corrected error rate and the not corrected
error rate [11]. The framework includes other measures like
error correction efficiency, participant conscientiousness, uti-
lized bandwidth, wasted bandwidth etc [7]. Wobbrock and
Myers [13] extend the character-level error analysis to the
input stream by dealing with corrected character-level er-
rors, not just uncorrected errors. They propose algorithms
for automatically detecting and classifying character-level in-
put stream errors. Akiyo Kano et al. [4] describe a detailed
categorization on typing errors made by children during a text
copy exercise.

Word prediction [3] is one of the popular text entry rate en-
hancement strategies where it predicts word based on the
character(s) or word(s) user has already typed. Thus, word
prediction reduces the keystrokes required to compose text
completely [12]. Advanced word prediction systems like
POBox [8], VITIPI [1] etc. also support error detection and
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correction during text entry. An example of text composition
using word prediction is shown in Table 1.

Table 1. An example of text composition with word prediction

Presented text : “overall ”

Input stream : “ouera<<<<ve(overall )”

Transcribed text : “overall ”

In the text entry system without prediction, the input stream
(IS) usually contains more data than the transcribed string (T).
Existing error evaluating metrics are suitable for evaluating
text entry systems where users enter texts character by char-
acter. To compute the metrics, the keystrokes present in IS
are categorized into four classes namely, Correct (C), Incor-
rect and Not Fixed (INF), Fixed (F) and Incorrect but Fixed
(IF) [10]. On contrary, in text entry systems augmented with
rate enhancement strategies like word prediction supported
with or without error correction, more than one character are
inserted on a single click. So, these classes become unsuit-
able for text entry systems augmented with word prediction.
Moreover, in text entry systems augmented with word pre-
diction, committed errors can be corrected by the user as well
as the system. Thus, it is quintessentially important to rede-
fine the existing metrics and propose new to resolve the issue.
Consequently, the metrics also requires redefinition as well as
inclusion of new ones. In this paper, we propose five different
error classes and six new metrics suitable for measuring error
in text composition.

The rest of the paper is organized as follows. Section 2 de-
scribes our approach to evaluate text entry system supported
with word prediction. Section 3 presents the analysis of the
proposed metrics. Finally, Section 4 concludes the paper.

PROPOSED APPROACH
In this section, first we define few terminologies used later
in this paper. Next, we discuss the existing error classes fol-
lowed by the proposed classes in the context of text entry sys-
tem augmented with word prediction. Then, we propose new
metrics which can capture newly identified classes keeping
the existing one. Finally, we describe our approach to com-
pute these classes and metrics.

Terminologies
The terminologies used in our proposed approach are listed
below.

T1 → Target text T2 → Final composed text

Tlog → Content of log file iLog → Intermediate log

CN1 → Compact notation 1 CN2 → Compact notation 2

α→ Deleted text β → Typed text after α

ψ → Final word after modification

CDDTable→ Stores multiple modified data

IndexTable→ Stores starting index and count of backspace

DataTable→ Stores value of different error classes

In this paper, ‘ ’ represents the blank space between word,
‘<’ denotes backspace and ‘∗’ signifies the word selected
from the prediction list. The words within ‘(· · · )’ are rep-
resented as the predicted word.

Error Quantifying Classes
There are multiple error classes present to evaluate the text
entry system [7]. The description of each class is given below.

1. C: The C class indicates the keystrokes of correct charac-
ters present in the typed text.

2. INF : This class contains wrongly entered keystrokes
present in final text.

3. F : The keystrokes required for corrections are considered
in the F class. The keystrokes belong to this class are
backspaces.

4. IF : The keystrokes belongs to IF are those intermedi-
ate strokes which are in the IS while composing, but not
present in the final text. However, backspaces are ex-
empted from this class..

The definition of corrected errors [10] signifies any
backspaced character as error even though the character is
correct. Further, Mackenzie and Soukreff [11] point out
this limitation and categorize backspaced character into two
classes namely corrected-but-right and corrected-and-wrong.

5. IFe (Corrected − and − Wrong): This class presents
the character(s) which are initially incorrect and later on
corrected by user.

6. IFc (Corrected − but − Right): It contains character(s)
which are initially correct and then deleted to correct other
wrongly typed character(s).

Consider the following example for further clarification of
above mentioned classes.

Target text : the quick brown
User input : th quix<ck brpown

Transcribed text : th quick brpown

This example contains three errors. An omitted ‘e’ which is
the first vowel, an redundant ‘x’ which is later corrected by
a backspace, a redundant ‘p’ which remains uncorrected. So,
C = 14, INF = 2 (counting the extra ‘p’, and the missing
‘e’), IF = 1 (deleted character ‘x’), F = 1, IFe = 1 (‘x’),
and IFc = 0.

By definition, INF class represents the wrongly typed char-
acter(s) present in final text and F class indicates number
of backspace(s); thus, these classes are also compatible for
a system augmented with word prediction. However, other
two classes i.e. C and IF are concerned with the performance
of text entry system without word prediction. So, we modify
these classes to judge the text entry performance in presence
of a word prediction system. The classes are also compatible
when prediction system automatically detects and corrects the
mistakes made by the user.
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We rename C class as Ctotal and divide it into two classes,
Cuser and Csystem.

1. Cuser : This includes total number of characters correctly
entered by user during text composition. For example, T1
is “quick ”, and Tlog contains text “qa < uxc(quick )”.
Here, after entering “qa < uxc”, user selects the word
“(quick )” from prediction list. As a result, (T2) becomes
“quick ”. It may be noted that three characters (q, u and c)
are correctly entered by the user, whereas, ‘a’ and ‘x’ are
erroneous characters.

Moreover, in any text entry system, the space character
(‘ ’) needs to be inserted by the user (one key press). Al-
ternatively, in a word prediction system, space is automati-
cally inserted after selecting a word from the prediction list.
However, one key press is required to select the word from
the prediction list. Hence, the value of Cuser = 3+1 = 4.

2. Csystem : This represents the total number of characters
correctly entered by the word prediction system. In this
case, character ‘k’ is correctly inserted and ‘x’ is corrected
to ‘i’, hence Csystem = 2.

3. Ctotal : This comprises of the total number of characters
correctly entered by user and the word prediction system
[Ctotal = Cuser + Csystem].

We rename IF class as IFtotal and divide it into two class as
IFuser and IFsystem. Further, IFuser class is split into IFe

and IFc. Subsequently, IFc class is subdivided into IFr and
IFnr. The description of these classes are as follows.

1. IFe(Corrected − and − Wrong) : This presents the
character(s) which is initially incorrect and subsequently
corrected by user. For example, T1 is “overall ” and
Tlog is “ouera <<<< ve(overall )”, as a result T2 is
“overall ”. Here, user has entered the character ‘u’ which
are initially wrong but later on corrected by user to ‘v’ and
hence IFe = 1.

2. IFr(Corrected − but − RightRequired) : This repre-
sents the character(s) which is initially correct but later
on removed by user to correct some errors. However,
these characters are required to populate the required word
in prediction list. For example, T1 is “overall ”, Tlog
is “ouera <<<< ve(overall )”, and T2 is “overall ”.
After applying the effect of backspace in Tlog , we get
“ove(overall )”. Here, the character ‘e’ is required which
is initially deleted to correct the error. When it is entered
again the required word is predicted and hence IFr = 1.

3. IFnr(Corrected − but − RightNotRequired) : This
presents the character(s) which is initially correct and later
on removed by user to correct the error. As the required
word is predicted before these characters are typed, hence,
it is not required to reenter them. Considering the previ-
ous example, the character “uera” is deleted to correct the
error ‘u’. Here, the character ‘u’ belongs to IFe and char-
acter ‘e’ is an element of IFr. However, the character se-
quence “ra” is deleted and not required to enter again be-
cause the correct word is already predicted by the system.

Hence, those characters belong to IFnr class. In this case
IFnr = 2.

4. IFc(Corrected − but − Right) : This presents charac-
ter(s) which is initially correct and then deleted to correct
other wrongly typed character(s). These character(s) user
may require to reenter in order to complete the target text
[IFc = IFr + IFnr].

5. IFuser : This includes character(s) which is corrected by
user during text composition. Therefore, it contains all
character(s) belong to IFe and IFc.

6. IFsystem : This presents character(s) which is corrected
by system as user selects word from the prediction list. For
example, in “quxc(quick )” ‘x’ is corrected to ‘i’ by the
word prediction system, hence IFsystem = 1.

7. IFtotal(Incorrect − and − fixed) : This represents all
character(s) which is corrected during text entry either by
user or by the word prediction system [IFtotal = IFuser+
IFsystem].

Proposed Efficiency Measure Metrics
Various measures exist to quantify errors committed during
text composition. In this section, we describe existing perfor-
mance measure metrics as well as extend the scope of some
previously defined metrics. These metrics would be benefi-
cial to analyze input stream for character level error in text
composition system without prediction as well as text com-
position system augmented with simple and advanced word
prediction facility. The detailed description about these met-
rics is given below.

1. KSPC : This measure is a simple ratio of the number of en-
tered characters (including backspaces) to the final number
of characters in the transcribed string.

KSPC =
|T ′

log|
|T2|

(1)

where T ′log is computed from Tlog by converting predicted
word to ‘∗’.

2. Correction efficiency : Correction efficiency is the ratio of
a number of characters corrected during text entry to the
number of backspaces required to correct them. It is de-
fined as:

Correction efficiency =
IFtotal + δ

F + δ
(2)

The δ, used in this equation, is a constant factor which
takes care of the divide by zero problems. This situation
occurs when user composes the text without any backspace
and all corrections are done by the word prediction system.
The value of δ has been considered as 0.01 in our compu-
tation.

3. User conscientiousness : This metric compares the number
of characters corrected by the user during text entry to the
number of errors made, indicating how meticulous user is
while correcting errors.

User conscientiousness =
IFuser

IFtotal + INF
(3)
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4. Correct contribution : This metric is used to measure the
percentage of correct contribution by the user over the total
correctly entered text.

Correct contribution =

(
Cuser

Ctotal

)
× 100% (4)

5. Corrected saving : This is used to measure the percentage
of correct contribution by the system in the total correctly
entered text.

Corrected saving =

(
1−

Cuser

Ctotal

)
× 100% (5)

6. Total error rate : This metric represents percentage of total
error occurred during text composition and calculated as:

Total error rate =
IFtotal + INF

Ctotal + IFtotal + INF
× 100% (6)

7. Corrected error rate : This metric represents the percentage
of errors corrected during composition of the desired text.
This is calculated as:

Corrected error rate =
IFtotal

Ctotal + IFtotal + INF
× 100% (7)

8. Uncorrected error rate : This represents the percentage of
uncorrected errors left out in final transcribed text and can
be calculated as:

Uncorrected error rate =
INF

Ctotal + IFtotal + INF
× 100% (8)

9. Corrected by user error rate : This metric represent the per-
centage of error corrected by user.

Corrected by user error rate =
IFuser

Ctotal + IFtotal + INF
× 100% (9)

10. Corrected by system error rate : This metric represents the
percentage of error corrected by the system.

Corrected by system error rate =
IFsystem

Ctotal + IFtotal + INF
× 100% (10)

11. Corrected and wrong error rate : This indicates the fixed
keystrokes that are initially erroneous.

Corrected and wrong error rate =
IFe

Ctotal + IFtotal + INF
× 100% (11)

12. Corrected but right error rate : This metric contains the
fixed keystrokes that are initially correct.

Corrected but right error rate =
IFc

Ctotal + IFtotal + INF
× 100% (12)

13. Corrected but right and required error rate : This metric
represents the percentage of character belong to the IFr
during composition of the desired text.

Corrected but right and required error rate =
IFr

Ctotal + IFtotal + INF
×100%

(13)

14. Corrected but right and not required error rate : This metric
represents the percentage of characters belong to the IFnr
class during composition of the desired text. This contains
the characters which are correctly typed but not required
and deleted by user.

Corrected but right and not required error rate =
IFnr

Ctotal + IFtotal + INF
×100%

(14)

Computing Error Metrics
The basic steps to compute different error classes are shown
in Fig. 1 and described as follows. We take the input as T1
and Tlog. For each set of backspace in Tlog, we identify and
store overwritten data (if exists) in CDDTable. We also re-
move this overwritten data from Tlog and convert all the set
of backspace into box notation. Next, we utilize CDDTable
and predict word for the generation of string CN1. We cre-
ate IndexTable using this CN1 and iLog. For each entry in
IndexTable, we compute α, β from CN1 and ψ from iLog.
These data are then stored into DataTable for further analy-
sis. Next, we utilize the created DataTable for computation
of IFe, IFc, IFr and IFnr. Subsequently, we also compute
CN2 and T2 from Tlog. Finally, all other error classes like F ,
IFtotal, INF , Cuser, Csystem, Ctotal, IFuser, IFsystem are
computed using CN1, CN2, T2 and iLog, respectively.

Start T1 and Tlog

Compute iLog as:-

For each set of backspace in Tlog

- Store overwritten data into CDDTable
- Remove this data from Tlog

- Convert to box notation

Process backspace
CN2 = Convert to * notation
T2 = Execute predicted word 

Update iLog with CDDTable 
data and predicted word

Compute CN1 by processing 
backspace

Create IndexTable from
CN1 and iLog

For each entries in IndexTable

- Compute , from CN1

- Compute from iLog
- Store them in DataTable

For each entries in DataTable

- Compute R1, , 1, 2, R2

- Compute IFr, IFnr and IFe

Compute
- IFc, IFu, IFs, Cu, Cs

- Ct, F, INF and IFt

Stop

Figure 1. Flowchart of the proposed error evaluating methodology

Steps Involved in Processing of Log File
A log file is maintained when user composes the text using
word prediction system. The log file can further be analyzed
to compute various performance measuring metrics. Here,
T1, Tlog and T2 represent the target text to be composed, con-
tent of log file and final transcribed text, respectively.

In an advanced word prediction system, committed errors can
be corrected in two ways, using backspace or selecting the de-
sired word from prediction list. Suppose, the target text T1 is
“quick ” which consists of 6 characters including space (see
Table 2). To compose T1, user commits spelling error by in-
serting character ‘a’ at the place of ‘u’ and after that, uses
backspace ‘<’ to correct it. Further, in the same string, user
enters “uxc” rather than “uic”. Still there exist a spelling error
(‘x’ instead of ‘i’) in composed word which is not corrected
by user. The log file generated by word prediction system
contains the information about all the actions taken by the
user and represented as Tlog which is “qa < uxc(quick )”,
shown in Table 2. Note that, when the desired word is se-
lected from the prediction list, a space is automatically added
to the content. Based on different sequences of typed text,
backspace and prediction, some extra processing can be per-
formed on Tlog (explained in the next section). The sequence
of backspace(s) is converted into box notation for further
computation. The processed log data is represented as iLog.
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Table 2. Example of text composition with advanced word prediction

Terms Description
T1 quick

Tlog qa<uxc(quick )

iLog qa[01]uxc(quick )

CN1 qa[01]uxc∗
CN2 quxc∗
T2 quick

The iLog is further modified by converting the predicted
word, the string within bracket “(. . .)”, to ‘*’. The modified
data is stored in compact notation (represented as CN1 in
Table 2). CN1 may contain misspelled characters and corre-
sponding backspace by user. Another compact notation (rep-
resented as CN2 in Table 2) stores the data after applying the
effect of backspace onCN1. Finally, by applying the effect of
backspace on iLog and replacing user typed sequences with
the predicted one, we get the composed text stored as T2.

Computation of iLog
Tlog contains user log data, that is, all of the typed charac-
ters, spacebar, backspaces etc. as well as all selected words
from the prediction. Thus, some of these data get modified
or overwritten multiple times and not appeared in the final
transcribed text. These overwritten data needs to be removed
from Tlog in order to identify final text. iLog contains data
from Tlog after removal of overwritten data.

To calculate iLog, we first initialize iLog with the value
of Tlog . Then for each set of backspace B in iLog, we
count the occurrence of backspace, (i.e. ‘<’ in B) and con-
vert the continuous backspaces in box notation. Let, T1 is
“the quick brown ” and Tlog is “t(the )qw < ui(quiet )
<<< (quick )br(brown )”. Thus initial value of iLog is
“t(the )qw<ui(quiet )<<< (quick )br(brown )” and af-
ter converting set of backspaces into box notation, iLog be-
comes “t(the )qw[01]ui(quiet )[03](quick )br(brown )”.
Now, if the backspace set B does not modify any word which
is entered using the prediction system, then computation can
be continued for next backspace set. Otherwise, we iden-
tify the predicted word and also user’s input sequence which
results that predicted word. In this example, the second
backspace set modifies a word entered using prediction. Here,
the predicted word is “quick ” and user input sequence which
results “quick ” is “qw[01]ui”. Presence of backspace in user
input indicates that it contains multiple corrected data. So, we
store the starting position of user input in iLog, user input se-
quence and predicted word in CDDTable. Now we replace
user input sequence by predicted word in iLog. For this ex-
ample, CDDTable contains 7, qw[01]ui, quiet and after
replacing “qw[01]ui” by “quick ”, value of iLog becomes
“t(the )quiet [03](quick )br(brown )”. The stored data in
CDDTable also contributes in computation of error classes
related to user, that is, IFuser. Thus, after calculating CN2

and T2 form iLog, we update iLog by adding CDDTable
data with it. The value ofCN1 is calculated from this updated
iLog. After adding CDDTable data, final value of iLog is

“t(the )qw[01]ui(quiet)quiet [03](quick )br(brown )”.

Creation of IndexTable
While typing, users can commit errors which may or may not
be corrected in the final transcribed string. The corrections
are made with the help of backspace (<). The occurrence
of backspaces along with their starting index are calculated
and stored into IndexTable. We illustrate the computation
of IndexTable with a suitable example below.

Suppose, T1 is “the quick brown ” and Tlog is
“thw qui <<<<< e qu(quick )bxow <<< r(brown )”
(see Table 3). As a result, iLog contains data as
“thw qui[05]e qu(quick )bxow[03]r(brown )” and CN1

contains data as “thw qui[05]e qu ∗ bxow[03]r ∗”. Now
the index of each ‘[’ in CN1 are recorded as k and the
corresponding value between ‘[’ and ‘]’ are stored as v. We
store each k, v pair present in CN1 into IndexTable. In
addition to this, we also store the index of ‘[’ in iLog which
is represented as klog (see Table 4).

Table 3. Example 1

Terms Description
T1 “the quick brown ”
Tlog “thw qui<<<<<e qu(quick )bxow<<<r(brown )”
iLog “thw qui[05]e qu(quick )bxow[03]r(brown )”
CN1 “thw qui[05]e qu ∗ bxow[03]r∗”
CN2 “the qui ∗ br∗”
T2 “the quick brown ”

Table 4. IndexTable

k klog v

7 7 5
20 27 3

Computation of α
α represents a sequence of characters which are removed by
user in order to correct error(s) from text under composition.
It is computed from CN1 and IndexTable. The steps in-
volved in computation of α are described in Algorithm 1. We
extract first kth characters from CN1 and store it in δ. Then,
we process backspace, if any, in δ. Now, α is the last v char-
acter(s) of δ, where v represents the number of consecutive
backspaces for given k.

Input: CN1, (k, v) pair from IndexTable
Output: α for given (k, v)

1 δ ← copy first kth characters from CN1

2 δ ← process backspace in δ
3 α ← copy last v characters of δ
4 return α

Algorithm 1: Computation of α

Let T1 is “the quick ” and Tlog is “thw qux < i <<<<<
e qui(quick )”. As a result, CN1 contains “thw qux[01]
i[05]e qui∗” and (k, v) pair in IndexTable are (7, 1) and
(12, 5). Now if we calculate α for 2nd entry in IndexTable,
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then k is 12 and v is 5. So, δ is “thw qui” and after applying
the effect of backspace α results “w qui”.

Computation of β
β represents the sequence of characters which are entered by
user after removing the error(s) from the composed text. It
is computed from CN1. Algorithm 2 represents the steps
involved to compute β. In this algorithm, βstart and βend
represent starting and ending positions of β in CN1, respec-
tively. Let C represents the number of words in α which is
required to identify the proper position of βend. The array
content represents the characters which identify the end of
individual β. First, we initialize βend with βstart. Then, we
search for the position of any character of content array in
CN1 starting from βend and store the new position in βend.
This search is executed for C times. Finally, β is computed
by copying characters form βstart to βend from CN1.

Input: CN1, k and C as word count of α
Output: β for given k

1 βstart ← βend ← k + 4
2 content[ ] ← { ‘*’, ‘ ’, ‘[’ }
3 for i ← 1 to C do
4 βend ← IndexOfAny(CN1,content,βend)
5 if βend = −1 then βend ← Length(CN1)
6

7 else if CN1[βend] ̸= ‘[’ then βend++
8
9 β ← copy characters between βstart to βend of CN1

10 return β

Algorithm 2: Computation of β

Considering the example shown in Table 5, when k is 12, α
is “w qui”, hence C becomes 2. So, βstart is 16 and initially
βend is also 16. Finally, βend is 21, resulting β as “e qui∗”.

Table 5. Example 2

Terms Description
T1 “the quick ”
Tlog “thw qux<i<<<<<e qui (quick )”
iLog “thw qux[01]i[05]e qu(quick )”
CN1 “thw qux[01]i[05]e qui∗”
CN2 “the qui∗”
T2 “the quick ”

Computation of ψ
ψ represents the word(s) which is visible after user input or
modification. It is computed from iLog and indexTable.
The procedures to compute ψ are stated in Algorithm 3. In
this algorithm, ψstart and ψend represent starting and end-
ing positions of ψ in iLog, respectively. There may be pre-
diction or multiple backspaces while composing the current
word before klog position. So ψstart need to be calculated ac-
cordingly. Let C represents the number of words in α, which
is required to identify the proper position of ψend. Now, we
compute ∆ by applying the effect of backspace on characters
between ψstart and ψend from iLog. The typed characters
present in ∆ are then replaced with the predicted word and
stored in ψ.

Input: iLog, klog, v and C as word count of α
Output: ψ for given klog

1 µ ← copy up to (klog − v)th characters from iLog
2 ψstart ← LastIndexOf(µ,‘ ’)+1
3 while iLog[ψstart] =‘[’ do
4 µ ← copy up to (ψstart − 2)th characters from iLog
5 ψstart ← LastIndexOf(µ,‘ ’)+1
6 if iLog[ψstart]=‘)’ then ψstart++
7
8 ψend ← klog + 4
9 for i ← 1 to C do

10 ψend ← IndexOf(iLog,‘ ’,ψend)+1
11 if ψend = 0 then ψend ← Length(iLog)
12
13 µ ← copy characters between ψstart and ψend of iLog
14 ∆← process backspace on µ
15 ψ ← replace typed character(s) with predicted word, if any, on ∆
16 return ψ

Algorithm 3: Computation of ψ

Considering the example shown in Table 5, for (klog, v) pair
as (7, 5), α becomes “w qui” and as a result C is 2. So,
ψstart is calculated as 0 and ψend is initialized with 11. Then
ψend is changed to 13 and finally it contains 22. Thus, the
character sequence between ψstart and ψstop is “thw qui[05]
e qu(quick )”. After applying the effect of backspace on
that sequence, ∆ is “the qu(quick )”. Next typed charac-
ters “qu” will be replaced by the predicted word “quick ”
resulting ψ as “the quick ”.

Edit distance
Given two strings A and B, the score edit distance is defined
as the minimum number of edit operations needed to trans-
form B into A or vice-versa, with the allowed edit operations
being insertion, deletion, or substitution of a single charac-
ter [2]. For example, if A is “quickly” and B is “qxciklly”,
then edit distance between A and B is 4.

Maximum match
We have used the following technique to find the maximum
match between two strings.

LCS: Given two strings A and B, the term LCS is defined as
the longest subsequence common to both A and B [2]. For
example, A is “quickly” and B is “qxciklly”. The compu-
tation of LCS between A and B is shown in Table 6. The
actual subsequences are deduced in a “traceback” procedure
that follows the arrows backwards, starting from the last cell
in the table. When the length decreases, the sequences must
have a common element. Several paths are possible when
two arrows are shown in a cell (see Table 6). Figure 2(a) indi-
cates the subsequence for A and B which is “qikly”. In other
words, LCS(A,B) is “qikly”. As the length of longest com-
mon subsequence is five so it has 5 similar characters (the last
cell shown in Table 6). Similarly, the longest common sub-
sequence between “qxciklly” and “quickly” is “qckly” (i.e.
LCS(B,A) is “qckly”, shown in Fig 2(b)).

Identification of individual α, β and ψ
Suppose, user enters a sequence of texts and realizes that
some errors are prevalent in the previously entered text se-
quence. This error can occur in the current word or in any
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Table 6. Computation of the longest common subsequence (traceback
are shown with arrow)

ϕ ϕ q x c l k l l y
ϕ 0 0 0 0 0 0 0 0 0
q 0 ↖1 ←1 1 1 1 1 1 1
u 0 ↑1 ←↑1 ←1 1 1 1 1 1
i 0 ↑1 ←↑1 1 ↖2 2 2 2 2
c 0 1 1 ↖2 ←↑2 2 2 2 2
k 0 1 1 2 2 ↖3 3 3 3
l 0 1 1 2 2 3 ↖4 ←4 4
y 0 1 1 2 2 3 4 4 ↖5

q u i c k l y

q u c i k l l y

(a) LCS(A,B)

q u c i k l l y

q u i c k l y

(b) LCS(B,A)

Figure 2. The longest common subsequence

previous word(s). In order to correct an error, user selects
the backspace to remove character(s) up to the error position
and enters some new character(s). A single word can contain
multiple errors in different positions. Thus, user may choose
both backspace and prediction multiple times to compose a
word. Sometimes, user also needs to modify the predicted
word after selecting a wrong word from the prediction list.

In order to handle these situations, we need special attention
for computing α, β and ψ. As α may contain more than one
word, proper position is need to be identified in CN1 to get β
(steps 3 − 5 in Algorithm 4). Next step is to process the text
and identify whether some word(s) is missing between α and
β and finalize the value accordingly by deciding whether α,
β and ψ will be split or not.

In Table 7, α is “is word ” which contains two spaces. More-
over, the last character in α is also (‘ ’) hence, the value
of count is 2 and β becomes “wo ∗ ∗” (see CN1 and steps
3 − 5 in Algorithm 4). Similarly, value of ψ is “word is ”.
Next we process the text to decide whether α, β and ψ will
be split or not. We concatenate LCS(“is ”, “wo ∗ ”) and
LCS(“word ”, “ ∗ ”) which will be null (represented as Str,
steps 10−23 in Algorithm 4). Whereas, LCS(α, β) becomes
“wo”; as LCS(α, β) is not equal with Str hence, the value of
α, β and ψ will remain same (i.e. do not split, steps 38 − 44
in Algorithm 4). This process stores individual α, β and ψ in
DataTable.

Table 7. Example 3
Terms Description

T1 “this word is peculiar ”

Tlog “th(this )is word <<<<<<<<wo(word )(is )p(peculiar )”

iLog “th(this )is word [08]wo(word )(is )p(peculiar )”

CN1 “th ∗ is word [08]wo ∗ ∗p∗”
CN2 “th ∗ wo ∗ ∗p∗”
T2 “this word is peculiar ”

Computation of error class: IFuser

Once the data table is initialized, for each entry in
DataTable, we retrieve value for α, β and ψ (steps 4 − 6
in Algorithm 5) and compute the character belong to IFr

Input: IndexTable, CN1 and iLog
Output: α, β and ψ in DataTable

1 foreach entry in IndexTable do
2 α← compute α with CN1, k and v
3 count← count the occurrences of ‘ ’ in α
4 if last character in α ̸= ‘ ’ then count++
5
6 β ← compute β with CN1, k and count
7 ψ ← compute ψ with iLog, klog, v and count
8 ◃ initialize: α1 ← α, β1 ← β, Str ← NIL, ind← temp← 0
9 Content[ ]← {‘*’, ‘ ’}

10 ◃ Store[ , ] is a count ×2 dimensional array
11 for i← 0 to count− 1 do
12 ◃ identify input sequence for individual word from α1

13 temp← α1.IndexOf(‘ ’)
14 if temp ̸= −1 then ind← temp+ 1
15

16 else ind← length[α]
17

18 Store[i, 0]← copy characters from 0 to ind of α1

19 α1← remove character from 0 to ind of α1

20 ◃ identify input sequence for individual word from β1
21 temp← β1.IndexOfAny(content)
22 if temp ̸= −1 then ind← temp+ 1
23

24 else ind← length[β]
25

26 Store[i, 1]← copy characters from 0 to ind of β1
27 β1← remove character from 0 to ind of β1
28 Str ← Str+ LCS(Store[i, 0], Store[i, 1])
29 if LCS(α, β) = Str then
30 ◃ Split α, β and ψ when condition is true
31 for i← 0 to count− 1 do
32 dT[nI + i, 0]← k
33 dT[nI + i, 1]← v
34 dT[nI + i, 2]← Store[i, 0] ◃ value for α
35 dT[nI + i, 3]← Store[i, 1] ◃ value for β
36 temp← ψ.IndexOf(‘ ’)
37 if temp ̸= −1 then ind← temp+ 1
38

39 else ind← length[ψ]
40

41 dT[nI + i, 4]← copy characters from 0 to ind of ψ
42 ψ ← remove character from 0 to ind of ψ
43 nI ← nI + count
44 else
45 ◃ α, β and ψ will not be splitted
46 dT[nI, 0]← k
47 dT[nI, 1]← v
48 dT[nI, 2]← α
49 dT[nI, 3]← β
50 dT[nI, 4]← ψ
51 nI++

Algorithm 4: Identification of individual α, β and ψ

class, also represented as R1. This can be computed by tak-
ing LCS(α, β) (step 7 in Algorithm 5). There can be two
options: R1 does not contain any character or it has some
characters. IfR1 ̸= null, we extract the last character present
in R1 and represent it as ω. We then count the occurrences
of ω in R1, let it be represented by count1, and find the po-
sition of count1th occurrences of ω in α, let it be at position
j. Next, we extract the (j + 1)th character onward from α
and store them in γ1. Similarly, we compute γ2 from ψ (steps
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9− 19 in Algorithm 5). On the other hand, when R1 is null,
we assign γ1, γ2 as α and ψ, respectively (steps 21 − 22 in
Algorithm 5).

Input: DataTable
Output: Value of error class

1 for i← 0 to nI do
2 ◃ initialize: R← err ← R1← R2← ω← γ1← γ2← NIL
3 ◃ initialize: count1← count2← count3← nI ← 0
4 α← dT[i, 2] ◃ Retrieve α
5 β ← dT[i, 3] ◃ Retrieve β
6 ψ ← dT[i, 4] ◃ Retrieve ψ
7 R1 ← LCS(α , β) ◃ characters ∈ IFr

8 if length [R1] > 0 then
9 dT[i, 5]← R1 ◃ Store IFr characters

10 dT[i, 6]← ω← last character in R1

11 for j← 0 to length[R1] do
12 if R1[j] = ω then count1++ ◃ count the occurrence

of ω ∈ R1

13

14 dT[i, 7]← count1
15 for j← 0 to length[α] do
16 if α[j] = ω then
17 count2++ ◃ count the occurrence of ω ∈ α
18 if count1 = count2 then
19 dT[i, 8]← γ1 ← copy (j + 1)th characters

onward from α ◃ Compute γ1
20 for j← 0 to length[ψ] do
21 if ψ[j] = ω then
22 count3++ ◃ count the occurrence of ω ∈ ψ
23 if count1 = count3 then
24 dT[i, 9]← γ2 ← copy (j + 1)th characters

onward from ψ ◃ Compute γ2
25 else
26 dT[i, 8]← γ1 ← α ◃ Compute γ1
27 dT[i, 9]← γ2 ← ψ ◃ Compute γ2
28 dT[i, 10]← R2 ← LCS(γ1, γ2) ◃ characters ∈ IFnr

29 dT[i, 11]← length[α]
30 dT[i, 12]← IFr ← length[R1]
31 dT[i, 13]← IFnr ← length[R2]
32 dT[i, 14]← IFe ← dT[i, 11]− dT[i, 12]− dT[i, 13]
33 R← R1 +R2

34 err ← α
35 for j← length[R]− 1 to 0 do
36 ϕ← err.LastIndexOf(R[j])
37 err ← Remove the characters from err at position ϕ
38 dT[i, 15]← err ◃ characters ∈ IFe

39 for j← 12 to 15 do
40 for i← 0 to nI do
41 dT[nI, j]← dT[nI, j]+ dT[i, j]

Algorithm 5: Calculation of IFuser class

After computation of γ1 and γ2, we compute characters be-
long to IFnr and IFe (steps 23 − 32 in Algorithm 5). Char-
acter(s) belong to IFnr is computed by taking LCS(γ1, γ2).
Whereas, IFe contains those characters which are present in
α but neither part of IFr nor IFnr. In order to compute the
value of IFe, we merge the content of IFr and IFnr, and
store the result as R. For each character present in R from
right to left, we scan err from right to left and remove that
character from err (steps 28 − 32 in Algorithm 5). Finally,
the characters left out in err are the characters of IFe. The
last step is to compute the total IFr, IFnr and IFe. It can be

computed by taking the sum of all IFr, IFnr and IFe present
in DataTable (steps 33− 36 in Algorithm 5).

Referring to the previous example, α is “is word ”, β is
“word∗∗” and ψ is “word is ”. The character belong to IFr

class (R1) can be computed as LCS(“is word ′′, “word ∗
∗′′) which is “wo”. Hence, the last character present in R1

(ω) is “o”. Next, we find the proper position of ω in α, β
and ψ and compute γ1, γ2. In this case, γ1 = “rd ” and γ2
is “rd is ”. Character belong to IFnr (R2) is computed as
LCS(γ1, γ2) which is “rd ”. R, computed by concatenating
R1 and R2, contains “word ”. Hence, IFe contains “is ”.
Finally, IFr, IFnr and IFe hold the values as 2, 3 and 3,
respectively, shown in Fig. 3

Figure 3. Computation of IFuser

Computation of other error classes
The computation of F , INF , IFsystem, IFtotal, Cuser,
Csystem and Ctotal are described in this section. Let Cnt
represents the count of ‘∗’ in CN1. Initially, we count the
total occurrence of backspaces presented in Tlog and store the
value in F which is also interpreted as the essence of number
of errors corrected by user by means of backspace. The num-
ber of characters correctly entered by user (i.e. Cuser) can
be computed by taking the maximum match between T1 and
CN2 then adding it with Cnt.

Cuser = LCS(T1, CN2) + Cnt (15)

To compute Csystem, we convert the occurrence of ‘∗’ with
‘ ’ in the string CN2 and take maximum match between T2
and the converted data. Let the result of maximum match be
δ. We identify the number of character(s) present in T2 but
absent in δ. This represents the total number of characters
present in Csystem. As a result, Ctotal can be computed by
summing up Cuser and Csystem. The value of INF can be
computed as Edit Distance between T1 and T2.

INF = Edit Distance(T1, T2)

The steps involved in computation of IFsystem are as fol-
lows. For each predicted word in Tlog , we identify cor-
responding user input sequence and apply the effect of
backspace, if any. Then,maximum match between user in-
put and predicted word is calculated. We subtract the result
of maximum match from user input which gives the character
corrected by the system.

The value of incorrect and fixed by user (IFuser) can be ob-
tained by summing the IFe and IFc. Here IFc is a summa-
tion of IFr and IFnr. Finally, the IFtotal can be measured
by summing up IFuser and IFsystem. Figure 4 represents
the computation of F , INF , Cuser, Csystem, Ctotal, IFuser,
IFsystem, IFtotal, IFe, IFc, IFr and IFnr for the example
shown in Table 7.

ANALYSIS OF THE PROPOSED METRICS
The proposed error evaluating metrics are applicable in a
wide variety of text entry systems which include simple
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Figure 4. Classification of Errors

character by character text transcription system, word pre-
diction system with and without word correction facility
etc. The quantitative evaluation for those systems is de-
scribed in this section. Suppose, the target text T1 is
“the quick brown fox jump over the wall ”. To com-
pose this sequence of characters, different system perfor-
mances are being calculated.

Text entry system without prediction: To compose the target
text (T1), suppose Tlog is “the quick be < rown foy je <
ump ouer <<< ver the wall ”. Therefore, T2 is “the
quick brown foy jump over the wall ”. This text con-
tains only one spelling variation i.e. ‘y’ in “foy” (instead
‘x’ for “fox”). The detail description is shown in Table 8.

Simple word prediction system: For the word prediction sys-
tem which does not correct the spelling error, the calcula-
tion of different error metrics is described below. Suppose,
T1 is again “the quick brown fox jump over the wall ”
and user composes “th(the )qu(quick )be < ro(brown )
foy je < u(jump )ouer <<< ve(over )t(the )w(wall )”.
Here, spacebar is automatically inserted after the selection of
word from prediction list. Note that for the word “over”, user
follows the sequence “ouer<<<ve(over )”. In other word,
user misspells the character ‘u’ for ‘v’ and types “ouer”.
Then user erases the 3 characters (“uer”) using the backspace
(‘<’) and types the characters “ve”. Finally, the word “over”
appears in the prediction list and it is selected by the user.
Therefore, we can easily observe that the task requires 10
keypress (ouer<<<ve*) by the user including the selection
of word from the prediction window. The detail description
is shown in Table 8.

Advanced word prediction system: To compute the dif-
ferent error metric, we consider the target text as
“the quick brown fox jump over the wall ” and user
composed text as “th(the )qu(quick )bero(brown )foy je
< u(jump )oue(over )t(the )w(wall )”. Note that for the
word “over”, user composes the sequence as “oue(over )”.
We can easily observe that it requires 4 keypress by the user
including the selection of the word from the prediction win-
dow. As the proposed system detects and corrects the spelling
error, the number of key press required gets reduced.

The calculation of different error classes and performance
evaluating metrics for above mentioned three examples on

Table 8. Efficiency measure for without prediction, simple prediction
and advanced prediction

(a) Target text, user log data and final text
Target text (T1) the quick brown fox jump over the wall

L
og

da
ta

(T
lo

g
) Without

prediction
the quick be<rown foy je<ump
ouer<<<ver the wall

Simple
prediction

th(the )qu(quick )be<ro(brown )foy je<
u(jump )ouer<<<ve(over )t(the )w(wall )

Advanced
prediction

th(the )qu(quick )bero(brown )foy je<
u(jump )oue(over )t(the )w(wall )

Final text (T2) the quick brown foy jump over the wall

(b) Classification of errors
Efficiency Without Simple Advanced
measure prediction prediction prediction
Cuser 38 24 23
Csystem 0 14 15
Ctotal 38 38 38
F 5 5 1
INF 1 1 1
IFtotal 5 5 3
IFuser 5 5 1
IFsystem 0 0 2
IFc 2 2 0
IFe 3 3 1
IFr 2 1 0
IFnr 0 1 0

(c) Error metrics calculation

Efficiency measure
Without Simple Advanced

prediction prediction prediction
KSPC 1.26 0.90 0.72
Correction efficiency 1.00 1.00 3.00
User conscientiousness 83.33 83.33 25.00
Correct contribution 100 63.16 60.53
Correct savings 0.00 36.84 39.47
Total error rate 13.64 13.64 9.52
Corrected error rate 11.36 11.36 7.14
Uncorrected error rate 2.27 2.27 2.38
Corrected by user error rate 11.36 11.36 2.38
Corrected by system error rate 0.00 0.00 4.76
Corrected and wrong error rate 6.82 6.82 2.38
Corrected but right error rate 4.55 4.55 0.00
Corrected but right and required error rate 4.55 2.27 0.00
Corrected but right and not required error rate 0.00 2.27 0.00

system without prediction, with simple and advanced predic-
tion are represented in Table 8(b) and 8(c), respectively. In
future, in case of quantifying error classes and error metric
for different examples, we apply formulae from existing lit-
erature as well as proposed in this paper.

Software tool
To make this methodology easier to use, we make a tool avail-
able to the research community. It can be accessible from
http://www.nid.iitkgp.ernet.in/Metric/. This software
is written in C#.NET 3.5 with Microsoft Silverlight. This
needs user to specify the target text and the content of log file
for analysis. It shows the values of the existing and proposed
metrics. We verify that the tool works for all three conditions,
a) without prediction, b) prediction without error correction
support and c) prediction with error correction support. As
the service is developed to support unicode input, the useful-
ness of the service is not limited to any particular language.
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CONCLUSION AND FUTURE WORK
Existing error classes and metrics are unable to quantify er-
rors of text entry systems augmented with word prediction.
This limitation is overcome in this work. The redefined and
proposed error classes and error quantifying metrics, accord-
ing to this work, is applicable to various text entry systems
with and without word prediction. Based on the work, a soft-
ware tool has been developed with which error correction ef-
ficiency can be evaluated automatically. This tool thus helps
user interface designer to evaluate a text entry system and
user performance. The proposed metrics further can be ex-
tended for text entry system where multiple keys are used to
compose a single character (e.g. “Shift”, “Ctrl” key).
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